Usage of the medical background information
Prof. Dr. med. Norbert W. Guldner
Prof. Dr. med. Norbert W. Guldner

Dear colleagues,

The dynamic cardiomyoplasty (DCMP) is well known since 1985. After the first clinical applications it had only partially fulfilled the therapeutic expectations. This fact has been common with other therapies like the heart transplantation, which developed to the gold standard in the treatment of end stage heart failure not before using cyclosporine. This comparison limped, like most of comparisons do: The heart transplantation initially was completely inacceptable without immunosuppression and was not effective before the second clinical application using cyclosporine. But up to now due to the shortage of donor organs it is limited in its application. 

The dynamic cardiomyoplasty was therapeutic effective with its nearly unlimited availability of the latissimus dorsi muscle despite of a distinct muscle damage after a long observation period of 6-8 years.

Now that the muscular wrap can become preserved by an electrical stimulation of a muscle preserving myo-stimulator, a closed loop controlled dynamic cardiomyoplasty should become significantly more therapeutic effective than the dynamic cardiomyoplasty before. Therapies for the treatment of the end-stage heart failure are needed urgently for clinical use.

In the following chapter a muscle preserving myo-stimulator is shown and long term results of the dynamic cardiomyoplasty are demonstrated as well as its indications and contra-indications. Especially results of the basic research of muscle support systems are discussed, to demonstrate why it makes sense to begin a second start with the closed loop controlled cardiomyoplasty with results derived from large animal studies.

Yours

 

Prof. Dr. med. Norbert Guldner

Autologous Muscular Treatment Options for Endstage Heart Failure — A Critical Appraisal of the Dynamic Cardiomyoplasty (DCMP) vs. a New Concept of a Closed- Loop Controlled DCMP (CLC-DCMP)

Dynamic cardiomyoplasty (DCMP) aims at improving cardiac function in cases of severe heart failure by wrapping the latissimus dorsi (LD) muscle, (usually left LD) around the ventricles and stimulating it electrically, synchronously to the ventricular function (Figure 1, Figure 2).
It is a surgical treatment option mostly for pharmacologically untreatable heart failure. The first successful clinical application was performed in 1985 (Broussais Hospital, Paris, [1]). Since then, more than 1.000 surgeries have been performed worldwide [2]. The clinical results of the DCMP however did not live up to the expectations due to the loss of muscle strength [3][4] and muscle damage [5][6].


In DCMP, a special kind of tissue engineering is applied using an electric stimulation on autologous skeletal muscles (electrical muscular tissue engineering). The fiber type changes from the fatiguing type IIa to the fatigue resistant type I [7], [8]. Type IIx fibers disappear. The gene expression for myosin heavy chains IIa (MHCII) is changed into heavy chains I (MHCI) [3]. Intramuscular collaterals are opened [9], [10] and enhanced and capillary density is
increased [11].


A critical analysis of more than 20 years and more than 1.000 clinical cases should demonstrate it’s clinical impact [1], [2], [4–6], [12–145]. Clinical efficacy concerning survival, clinical outcome indicated by NYHA- class, ejection fraction of the left heart ventricle (EF) was evaluated by the use of more than 100 relevant reports.

Indications and Contraindications for the Dynamic Cardiomyoplasty

Indications and Contraindications for the Dynamic Cardiomyoplasty

In non-drug responding end-stage heart failure patients in NYHA III mainly the following pathologies are found: cardiomyopathies of inborn or infectious myocardial diseases, ischemic cardiomyopathies and an isolated right heart failure likewise in a chronic pulmonary hypertension. These patients mostly being older than 60 years have limited chances to receive heart transplantation. In cardiomyoplasty impressive therapeutic responders are heart failure patients with an isolated insufficiency of the right heart ventricle. Most candidates for a DCMP however suffer from an idiopathic cardiomyopathy or from an ischemic heart failure. Infectious myocardial disease like the Chagas disease, were treated as well by a cardiomyoplasty are primary limited to South America.

Indication

  • Adults with idiopathic or ischemic, dilative cardiomyopathy or isolated right heart failure
  • Non drug respondent myocardial failure NYHA III and
  • A left ventricular ejection fraction > 15% und < 40%
  • Non responder for resynchronization therapy and a contraindication for a heart transplantation or shortage in donor organs

 

Contraindications

  • NYHA classification IV
  • Intravenously applied inotropic drugs
  • Intra-aortic balloon pump dependency
  • Injured latissimus dorsi muscle
  • Mitral or tricuspid heart valve insufficiency > Grade II
  • Pulmonal resistance > 275 dyn/s/cm
  • Pulmonary hypertension with a PCWP > 27mmHg
  • Left ventricular end-diastolic volume > 110 ml/m²
  • Left ventricular diameter > 75 mm or heart-/ thoracic ratio > 0.6
  • Left ventricular end-diastolic pressure > 35 mmHg
  • Maximal cardiac VO2-reserve under working conditions: VO2max < 10ml/kg/min
  • Atrial fibrillation > 100bpm, under drug therapy
  • Lung capacity < 60%
  • Creatinine of the serum > 2,8 mg/dl
  • Pronounced liver failure
  • Coagulation disorders
  • Pronounced ventricular extra-systoly
  • Cardial cachexia
Intended Use and Operation of the MyoSen Myo-Stimulator

Intended Use and Operation of the MyoSen Myo-Stimulator

Intended Use

The MyoSen muscle stimulator system is built to support cardiomyoplasty, a surgical treatment option for end-stage heart failure. 

It stimulates a skeletal muscle, which has been wrapped around the heart. This autologous muscle is stimulated synchronously to the heart action.

Application of the Implant

The single use muscle stimulator is implanted under sterile conditions into the abdominal wall or in special cases into the chest wall. Its topography may be subcutaneous, in adipose tissue, subfascial or  submuscular with contact to fatty, connective or muscular tissue. The implantation depth should not exceed 50 mm providing a failure-free telemetric communication between programmer and implanted device.

As sensing electrodes for the ventricular electrocardiogram (EGM) serve sterile, unipolar or bipolar electrodes for permanent use. The electrodes have to be sufficient long and have to be equipped with an IS-1 profile connector. 

The sensing electrodes should provide a QRS-signal with a amplitude of >= 5mV and a slope >= 0.5 V/s. 

The stimulation pulses for the muscle are delivered by single-use, bipolar Myo-Sen Muscle Stimulation Electrodes1 implanted under sterile conditions. 

The single-use, sterile torque wrench equipped with a hexagon socket, M2 is used to fasten the electrodes in the header of the muscle stimulator.

Nominal battery life is six years with a common pulse pattern2.

 At end of battery lifetime , the muscle stimulator can be replaced by a separate surgical procedure.

A MyoSen Programmer is required for the telemetric programming of the implant.

______________________

1 The MyoSen Muscle Stimulation Electrodes have an impedance of 150 to 180 Ω and more than 10 mm2 anode or cathode surface

2 Using muscle electrodes with a combined (electrodes/tissue) impedance of 300 Ω: amplitude 5V,  pulse width 240µs, pulse interval 30 ms, 6 pulses per burst, 10000 bursts per day

The Microstim MyoSen Muscle Stimulator System (under development)

The Microstim MyoSen Muscle Stimulator System (under development)

MyoSen Muskelschrittmacher

A detailed description of the Microstim MyoSen Muscle Stimulator System can be found in the technical documentation.

The Muscle Stimulator System comprises:
Implantable components:

  • Muscle stimulator (sterile)
  • Myocardial sensing electrode (sterile)
  • Muscle stimulating electrode (sterile)

and non-implantable components:

  • Torque wrench, hex-key, M2 (sterile)
  • Programmer (tablet-based, with integrated programming head)

The muscle stimulator consists of an electronic module, a battery, a titanium housing and an epoxy resin header containing the connectors.
Its muscular stimulation output channel is synchronized to its cardiac sensing channel by a microcontroller running a controlling software.

The cardiac sensing channel is capable to record a ventricular electrocardiogram (ECG). The muscular stimulation channel provides a programmable muscular stimulation pattern.
The controlling software synchronizes the muscular stimulation output to the cardiac signal.
Both, the sensing and the stimulation channel can be operated ins a monopolar or bipolar configuration. In a monopolar configuration, the titanium housing serves a anode and the unipolar electrode as cathode.
As cardiac sensing electrode, a custom implantable electrode for epicardial ventricular placement and permanent use, equipped with an IS-1 plug may be used. It should deliver a myocardial ECG amplitude >= 5 mv.
The bipolar MyoSen Muscle stimulation electrode consists of conductive coil structures with platinum-iridium contact surfaces, coiled conductors, silicone coating and a IS-1 compatible plug, whih is protected against polarity reversal.
The materials in contact with tissue comprise titanium, epoxy-resin, silicon and platinum-iridium.

The Microstim MyoSen muscle stimulator system is still under development. 
First clinical applications are due late 2015.

Scientific backgorund of the tissue preserving muscle stimulator

For experimental studies concerning the influence of electrostimulation to the power development of skeletal muscle, a large animal study using an intra-thoracic elastic training device has been performed.   

 

Prinzip der Schlagvolumen und Schlagenergiebestimmung 

Figure A: Evaluation of the muscle induced pressure, stroke volume and delivered daily energy using an elastic training device.

In Figure A, top left, the elastic training device is demonstrated which is made from silicone rubber including a non- distensible central chamber and two elastic side-bladders (Frogger). The device is filled with saline solution. Latissimus dorsi muscle is placed intra-thoracic and wrapped around the central chamber of the training device. After electrical stimulation of the latissimus dorsi muscle, the central chamber of the device is compressed and a stroke volume is shifted into the elastic side bladders. Puncturing a subcutaneously placed measuring chamber, which is connected with the cavum of the central chamber, the pressure within the cavum is measurable. Correlating the pressure P developed by a muscle contraction with the pressure-volume curve of the elastic side bladders (bottom left), the stroke-volume V can be calculated. Multiplying the stroke volume V with the pressure P and the number of muscular contraction per day, the daily energy delivered by the muscle can be calculated (Guldner NW, Eichstaedt HC, Klapproth P, et al. Dynamic training of skeletal muscle ventricles: a method to increase muscular power for cardiac assistance. Circulation. 1994;89:1032–1040.).

   
   
Abfallende Tagesenergie bei hochfrequenter Stimulation

Figure B: Visualization of the course of the daily energy delivered from the skeletal muscle ventricle during a muscle fiber transformation over several months from Type II to Type I fibers. After transformation into 100% Type-I fibers, the amount  of the energy delivery is reduced to clinically non relevant values

   
MLD Gelelektrophorese bei 5Hz und 1Hz  

Figure C: Diagram about the influence of an increasing mean stimulation frequency on the composition of muscle fibers in the rabbit. Shown is a frequency dependent transformation of strong Type-IIA fibers to 100% weak Type-I fibers (Lopez-Guajardo A, Sutherland H, Jarvis JC, Salmons S. Induction of a fatigue-resistant phenotype in rabbit fast muscle by small daily amounts of stimulation. J Appl Physiol 90: 1909–1918, 2001).

 

 

This basic research by the group of Stanley Salmons showed the correlation between the mean electrical stimulation frequency and the fiber transformation. The mean electrical stimulation frequency is calculated by relating the number of pulses delivered to the muscle to the elapsed time in seconds. Figure C demonstrates that an increasing mean stimulation frequency changes all Type-IIA – muscle fibers into 100% Type-I fibers. These findings confirms our results shown in figure B.

   
Druck, Schlagvolumen und Tagesenergie bei 5Hz und 1Hz  

Figure D shows the influence of a mean stimulation frequency of 5 Hz (left vertical diagrams) and 1 Hz (right vertical diagrams) on pressure, stroke volume and daily energy of skeletal muscle ventricles using the elastic training model in the experimental setting of figure A using 2 groups of six Bore Goats each.

 

 

The limitation of the mean stimulation frequency to 1Hz shows in figure D impressive higher pressures, stroke volumes and daily energies. These results were path breaking for the development of the muscle preserving MyoSen- myostimulator.

 

 

 

 

   
Histologischer Befund  

Figure E: Histologic findings after 5 months of electrical stimulation with 5Hz with an extensive muscle damage and a replacement of muscle fibers by fatty cells (left). Applying a mean stimulation frequency of 1 Hz the muscle fibers are preserved (right).

 

 

 

   
Gelelektrophorese MHC

Figure F: Gel electrophoresis of myosin heavy chains (MHC) of group A with a mean stimulation frequency of 5 Hz and group B with a mean stimulation frequency of 1Hz.

 

 

Control C shows the MHC II and MHC-I fraction of the non- electrically stimulated latissimus dorsi muscle of the contra-lateral muscle of goats from group A or B. In group A, stimulated by 5 Hz, 100% of MHC-I has been expressed. In group B, stimulated by 1Hz, the MHC-II / MHC-I composition approximates a 50% to 50% distribution.

 

 

 

Summary

Studies with large animals (goats) showed, that a mean stimulation frequency of 5Hz, similar to that used in former years clinically in cardiomyoplasties, results in severe muscle damage. Using a mean 1 Hz stimulation however, the muscle tissue has been preserved. A mean 1 Hz stimulation equates a delivery of 86.000 pulses per day. The MyoSen- muscle stimulator enables such a reduced and controlled pulse delivery preserving the muscle tissue.

 

 

References - Dynamic Cardiomyoplasty -

[1] A. Carpentier and J. C. Chachques, “Myocardial substitution with a stimulated skeletal muscle: first successful clinical case.,” Lancet, vol. 1, no. 8440, p. 1267, Jun. 1985.

[2] J. C. Chachques, O. J. Jegaden, V. Bors, T. Mesana, C. Latremouille, P. A. Grandjean, J. N. Fabiani, and A. Carpentier, “Heart transplantation following cardiomyoplasty: a biological bridge,” Eur.J.Cardiothorac.Surg., vol. 33, no. 1010–7940 (Print), pp. 685–690, Apr. 2008.

[3] D. Pette, “Fiber transformation and fiber replacement in chronically stimulated muscle,” J Heart Lung Transplant, vol. 11, pp. 299–305, 1992.

[4] G. Rigatelli, U. Carraro, M. Barbiero, R. Riccardi, F. Cobelli, and M. Gemelli, “A Review of the Concept of Circulatory Bioassist Focused on the ‘New’ Demand Dynamic Cardiomyoplasty: The Renewal of Dynamic Cardiomyoplasty?,” Angiology, vol. 54, no. 3, pp. 301–306, May 2003.

[5] P. S. Gutierrez, W. O. Pires Jr., S. K. Marie, L. F. Moreira, C. Mady, M. L. Higuchi, N. A. Stolf, and J. A. Ramires, “Histopathological findings in skeletal muscle used in human dynamic cardiomyoplasty,” J.Pathol., vol. 194, no. 0022–3417 (Print), pp. 116–121, May 2001.

[6] J. H. Davidse, F. H. van der Veen, C. M. Lucas, O. C. Penn, M. J. Daemen, and H. J. Wellens, “Structural alterations in the latissimus dorsi muscles in three patients more than 2 years after a cardiomyoplasty procedure.,” European heart journal, vol. 19, no. 2, pp. 310–8, Feb. 1998.

[7] S. Salmons and F. Sreter, “Significance of impulse activity in the transformation of skeletal muscle type,” Nature, vol. 263, pp. 30–34, 1976.

[8] D. Pette, “Historical Perspectives: plasticity of mammalian skeletal muscle,” J Appl Physiol, vol. 90, no. 3, pp. 1119–24, 2001.

[9] S. Salmons, A. Tang, J. Jarvis, H. Degens, M. Hastings, and T. Hooper, “Morphological and functional evidence, and clinical importance, of vascular anastomoses in the latissimus dorsi muscle of the sheep,” J Anat, vol. 193, no. 1, pp. 93–104, 1998.

[10] A. Tang, J. Jarvis, T. Hooper, and S. Salmons, “Observation and basis of improved blood flow to the distal latissimus dorsi muscle: a case for electrical stimulation prior to grafting,” Cardiovascular Research, vol. 40, pp. 131–137, 1998.

[11] R. E. Klabunde, M. Anderson, William A. Locke, S. E. Ianuzzo, and C. D. Ianuzzo, “Regional blood flows in the goat latissimus dorsi muscle before and after chronic stimulation,” J Appl Physiol, vol. 81, pp. 2365–2372, 1996.

[12] M. a Acker, “Dynamic cardiomyoplasty: at the crossroads.,” The Annals of thoracic surgery, vol. 68, no. 2, pp. 750–5, Aug. 1999.

[13] S. D. Akhmedov, E. V. Krivoschekov, M. V. Pekarskaya, A. L. Krylov, Z. V. Vesnina, V. I. Chernov, A. M. Chernyavskiy, Y. Y. Vechersky, R. S. Karpov, E. a. Nechaev, and V. V. Pekarski, “Clinical Results of Dynamic Cardiomyoplasty,” Journal of Cardiac Surgery, vol. 10, no. 5, pp. 573–579, Sep. 1995.

[14] L. . Almada, H; Molteni, “Cardiomyoplasty: Our experience after six years,” Basic Appl.Myol., vol. 3, no. 4, pp. 303–306, 1994.

[15] H. Almada, L. Molteni, R. Ferreira, and D. Ortega, “Clinical experience with dynamic cardiomyoplasty.,” Journal of cardiac surgery, vol. 5, no. 3, pp. 193–8, Sep. 1990.

[16] H. Almada, L. Molteni, R. Ferreira, D. Ortega, T. Cianciulli, S. Llanos, and H. Prezioso, “The value of the echo-Doppler in cardiomyoplasty procedures,” J.Card Surg., vol. 6, no. 0886–0440 (Print), pp. 113–118, Mar. 1991.

[17] J. O. C. Auler and L. F. Moreira, “Anesthetic Management of Patients Undergoing Cardiomyoplasty,” Anesthesiology, vol. 77, pp. 379–381, 1992.

[18] M. Barbiero, U. Carraro, R. Riccardi, A. Cotogni, and G. Ri-, “Demand Dynamic Cardiomyoplasty : Two-Year Results,” Basic Appl.Myol., vol. 9, no. 4, pp. 195–206, 1999.

[19] G. Bellotti, a Moraes, E. Bocchi, S. Arie, C. Medeiros, L. F. Moreira, a Jatene, and F. Pileggi, “Late effects of cardiomyoplasty on left ventricular mechanics and diastolic filling.,” Circulation, vol. 88, no. 5 Pt 2, pp. II304–8, Nov. 1993.

[20] A. Benicio, L. F. Moreira, F. Bacal, N. A. Stolf, and S. A. Oliveira, “Reevaluation of long-term outcomes of dynamic cardiomyoplasty,” Ann.Thorac.Surg., vol. 76, no. 0003–4975 (Print), pp. 821–827, Sep. 2003.

[21] A. Benicio, L. F. Moreira, F. Bacal, N. Stolf, and S. A. Oliveira, “Risk factors of mortality in nine years of follow-up after dynamic cardiomyoplasty,” Rev Bras Cir Cardiovasc, vol. 18, no. 2, pp. 163–171, 2003.

[22] P. Blanc and C. Girard, “Latissimus dorsi cardiomyoplasty. Perioerative management and postoperative evolution,” Chest, vol. 103, pp. 214–220, 1993.

[23] E. A. Bocchi, G. Bellotti, L. F. Moreira, F. Bacal, A. V. de Moraes, A. Fiorelli, A. Mansur, N. Stolf, A. Jatene, and F. Pileggi, “Mid-term results of heart transplantation, cardiomyoplasty, and medical treatment of refractory heart failure caused by idiopathic dilated cardiomyopathy,” J.Heart Lung Transplant., vol. 15, no. 1053–2498 (Print), pp. 736–745, Jul. 1996.

[24] E. A. Bocchi, G. V. Guimaraes, L. F. Moreira, F. Bacal, A. V. de Moraes, A. C. Barreto, M. Wajngarten, G. Bellotti, N. Stolf, A. Jatene, and ., “Peak oxygen consumption and resting left ventricular ejection fraction changes after cardiomyoplasty at 6-month follow-up,” Circulation, vol. 92, no. 0009–7322 (Print), pp. II216–II222, Nov. 1995.

[25] E. A. Bocchi, L. F. Moreira, A. V. de Moraes, F. Bacal, E. Sosa, N. A. Stolf, G. Bellotti, A. D. Jatene, and F. Pilleggi, “Arrhythmias and sudden death after dynamic cardiomyoplasty,” Circulation, vol. 90, no. 0009–7322 (Print), pp. II107–II111, Nov. 1994.

[26] E. a Bocchi, L. F. Moreira, a V. de Moraes, G. Bellotti, M. Gama, N. a Stolf, a D. Jatene, and F. Pileggi, “Effects of dynamic cardiomyoplasty on regional wall motion, ejection fraction, and geometry of left ventricle.,” Circulation, vol. 86, no. 5 Suppl, pp. II231–5, Nov. 1992.

[27] S. A. Borghetti-Maio, B. W. Romano, E. A. Bocchi, L. F. Moreira, A. C. Barreto, N. A. Stolf, G. V. Bellotti, F. Pilleggi, and A. D. Jatene, “Quality of life after cardiomyoplasty,” J.Heart Lung Transplant., vol. 13, no. 1053–2498 (Print), pp. 271–275, Mar. 1994.

[28] D. M. Braile and M. J. F. Soares, “Cardiomyoplasty in 26 Patients with up to Six Years Follow-Up,” Basic Appl.Myol., vol. 3, no. 4, pp. 289–302, 1993.

[29] D. Braile, P. R. Brofmann, K. Shatarov, A. S. Revishvili, L. Bokeria, and M. Schaldach, “Clinical experience with ANS controlled Cardiomyoplasty,” Biomedical Research, pp. 7–9, 1996.

[30] D. M. Braile, M. F. Godoy, G. H. Thèvenard, R. S. Thèvenard, M. C. V. B. Braile, J. C. F. Leal, M. Schaldach, and H. The, “Dynamic Cardiomyoplasty : Long-Term Clinical Results in Patients With Dilated Cardiomyopathy,” Ann.Thorac.Surg., vol. 69, pp. 1445–1447, 2000.

[31] A. Carpentier, J. C. Chachques, C. Acar, J. Relland, S. Mihaileanu, D. Bensasson, J. P. Kieffer, P. Guibourt, D. Tournay, and I. Roussin, “Dynamic cardiomyoplasty at seven years.,” The Journal of thoracic and cardiovascular surgery, vol. 106, no. 1, pp. 42–52; discussion 52–4, Jul. 1993.

[32] U. Carraro, G. Docali, and M. Barbiero, “Demand Dynamic Cardiomyoplasty: Improved clinical benefits by non-invasive monitoring of LD flap and long- Term tuning of its Dynamic contractile characteristics by activity-rest regime,” Basic Appl.Myol., vol. 8, no. 1, pp. 11–15, 2011.

[33] U. Carraro, G. Rigatelli, K. Rossini, and M. Barbiero, “Demand dynamic bio-girdling in heart failure: improved efficacy of dynamic cardiomyoplasty by LD contraction during aortic out-flow,” Int.J.Artif.Organs, vol. 26, no. 0391–3988 (Print), pp. 217–224, Mar. 2003.

[34] U. Carraro, G. Docali, A. Cotogni, G. Rigatelli, D. Casarotto, and C. Muneretto, “Demand dynamic cardiomyoplasty: mechanograms prove incomplete transformation of the rested latissimus dorsi,” Ann.Thorac.Surg., vol. 70, pp. 67–73, 2000.

[35] J. C. Chachques, C. Acar, M. Portoghese, D. Bensasson, P. Guibourt, P. Grare, V. A. Jebara, P. A. Grandjean, and A. Carpentier, “Dynamic cardiomyoplasty for long-term cardiac assist.,” European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery, vol. 6, no. 12, pp. 642–7; discussion 647–8, Jan. 1992.

[36] J. C. Chachques, P. G. Argyriadis, G. Fontaine, J.-L. Hebert, R. a Frank, N. D’Attellis, J.-N. Fabiani, and A. F. Carpentier, “Right ventricular cardiomyoplasty: 10-year follow-up.,” The Annals of thoracic surgery, vol. 75, no. 5, pp. 1464–8, May 2003.

[37] J. C. Chachques, A. Berrebi, A. Hernigou, A. Cohen-Solal, T. Lavergne, J. P. Marino, N. D’Attellis, D. Bensasson, and A. Carpentier, “Study of muscular and ventricular function in dynamic cardiomyoplasty: a ten-year follow-up,” J.Heart Lung Transplant., vol. 16, no. 1053–2498 (Print), pp. 854–868, Aug. 1997.

[38] J. C. Chachques and A. Carpentier, “Postoperative Management,” in Cardiomyoplasty, A. Carpentier, J. C. Chachques, and P. A. Grandjean, Eds. Futura Publishing Company, Inc., 1991, pp. 131–138.

[39] J. C. Chachques, O. Jegaden, T. Mesana, Y. Glock, P. A. Grandjean, and A. F. Carpentier, “Cardiac bioassist: results of the French multicenter cardiomyoplasty study.,” Asian cardiovascular & thoracic annals, vol. 17, no. 6, pp. 573–80, Dec. 2009.

[40] J. C. Chachques, J. P. Marino, P. Lajos, R. Zegdi, N. D’Attellis, P. Fornes, J. N. Fabiani, and A. Carpentier, “Dynamic cardiomyoplasty: clinical follow-up at 12 years.,” European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery, vol. 12, no. 4, pp. 560–7; discussion 567–8, Oct. 1997.

[41] J. C. Chachques, a. B. A. Shafy, F. Duarte, B. Cattadori, N. Goussef, L. Shen, and A. Carpentier, “From Dynamic to Cellular Cardiomyoplasty,” Journal of Cardiac Surgery, vol. 17, no. 3, pp. 194–200, Jul. 2002.

[42] V. S. Chekanov and S. Deshpande, “Cardioverter-Defibrillator implantation to safeguard against fatal arrhythmias in cardiomyoplasty patients,” Basic Appl.Myol., vol. 9, no. 4, pp. 187–194, 1999.

[43] V. S. Chekanov, S. Deshpande, D. Francischelli, P. Werner, D. Waller, and D. H. Schmidt, “Cardiomyoplasty after implantation of a pacemaker and cardioverter/defibrillator,” Ann.Thorac.Surg., vol. 66, no. 0003–4975 (Print), pp. 954–956, Sep. 1998.

[44] V. S. Chekanov, D. E. Sands, C. S. Brown, F. Brum, P. Arzuaga, S. Gava, F. P. Eugenio, V. Melamed, and H. W. Spencer, “Cardiomyoplasty: first clinical case with new cardiomyostimulator.,” Asian cardiovascular & thoracic annals, vol. 10, no. 3, pp. 264–6, Sep. 2002.

[45] R. C. Chiu, “Dynamic cardiomyoplaty for heart failure,” Br Heart J, vol. 73, pp. 1–3, 1995.

[46] R. C. Chiu, J. N. Odim, and J. H. Burgess, “Responses to dynamic cardiomyoplasty for idiopathic dilated cardiomyopathy. The McGill Cardiomyoplasty Group,” Am.J.Cardiol., vol. 72, no. 0002–9149 (Print), pp. 475–479, Aug. 1993.

[47] A. Cohen-Solal, R. Choussat, J. C. Chachques, T. Laperche, B. Caviezel, M. Geneves, A. Carpentier, and R. Gourgon, “Serial assessment of cardiopulmonary exercise capacity after cardiomyoplasty for either ischemic or idiopathic dilated cardiomyopathy,” Am.J.Cardiol., vol. 77, no. 0002–9149 (Print), pp. 623–627, Mar. 1996.

[48] J. I. de la Torre, D. W. Griffin, and L. O. Vasconez, “Harvesting the latissimus dorsi muscle for cardiomyoplasty.,” Plastic and reconstructive surgery, vol. 105, no. 1, pp. 83–8, Jan. 2000.

[49] F. Delahaye, O. Jegaden, P. Montagna, P. Desseigne, P. Blanc, C. Vedrinne, P. Touboul, A. Saint-Pierre, M. Perinetti, R. Rossi, and ., “Latissimus dorsi cardiomyoplasty in severe congestive heart failure: the Lyon experience,” J.Card Surg., vol. 6, no. 0886–0440 (Print), pp. 106–112, Mar. 1991.

[50] E. Domenegati, M. Maurelli, M. G. Chiaudani, a Pagnin, and M. Rinaldi, “Management of anesthesia during dynamic cardiomyoplasty.,” Journal of clinical anesthesia, vol. 7, no. 3, pp. 177–81, May 1995.

[51] R. Driever, R. Bugenhagen, S. Fuchs, C. Minale, and H. O. Vetter, “Cardiomyoplasty: long-term results in ischemic cardiomyopathy,” Int.J.Artif.Organs, vol. 24, no. 0391–3988 (Print), pp. 152–156, Mar. 2001.

[52] A. Dumcius and K. Salcius, “Elektrostimulated Cardiomyoplasty: From experimental to clinical studies,” Pace, vol. 19, pp. 1205–1210, 1996.

[53] F.Fontaliran, J. C. Chachques, F. H. van der Veen, R. Scelsi, and A. Carpentier, “A Clinical-pathological Study 2 years following Cardiomyoplasty: Intact Latissimus Dorsi Muscle and metabolic transformation of Myofibers,” Basic Appl.Myol., vol. 7, no. 6, pp. 369–373, 1997.

[54] A. P. Furnary, J. A. Magovern, I. Y. Christlieb, J. E. Orie, K. A. Simpson, and G. J. Magovern, “Clinical cardiomyoplasty: preoperative factors associated with outcome,” Ann.Thorac.Surg., vol. 54, no. 0003–4975 (Print), pp. 1139–1143, Dec. 1992.

[55] a P. Furnary, J. S. Swanson, G. Grunkemeier, and a Starr, “Lessons learned before and after cardiomyoplasty: risk sensitive patient selection and post procedure quality of life.,” Journal of cardiac surgery, vol. 11, no. 3, pp. 200–6.

[56] A. P. Furnary and J. S. Swanson, “Dynamic Cardiomyoplasty: Now and in the Future,” Basic Appl.Myol., vol. 3, no. 4, pp. 307–311, 1993.

[57] A. Furnary, M. Jessup, and L. F. Moreira, “Multicenter Trial of Dynamic Cardiomyoplasty for Chronic Heart Failure,” J Am Coll Cardiol, vol. 28, pp. 1175–80, 1996.

[58] P. Gerometta, S. D. Matteo, M. Agrifoglio, M. Naliato, A. Parolari, V. Arena, N. Valerio, and P. Biglioli, “Blood Flow Pattern in the Thoracodorsal Artery after Dynamic Cardiomyoplasty,” Basic Appl.Myol., vol. 8, no. 1, pp. 17–20, 1998.

[59] P. A. Grandjean, “Pulse Generator System for Dynamic Cardiomyoplasty,” in Cardiomyoplasty, A. Carpentier, J. C. Chachques, and P. A. Grandjean, Eds. Futura Publishing Company, Inc., 1991, pp. 123 – 130.

[60] P. A. Grandjean, M. Acker, R. Madoff, N. S. Williams, J. Woloszko, and C. Kantor, “Dynamic myoplasty: surgical transfer and stimulation of skeletal muscle for functional substitution or enhancement.,” Journal of rehabilitation research and development, vol. 33, no. 2, pp. 133–44, Apr. 1996.

[61] P. A. Grandjean, L. Austin, S. Chan, B. Terpstra, and I. M. Bourgeois, “Dynamic cardiomyoplasty: clinical follow-up results,” J.Card Surg., vol. 6, no. 0886–0440 (Print), pp. 80–88, Mar. 1991.

[62] P. A. Grandjean, J. C. Chachques, and O. Jegaden, “Long-term outcome of Dynamic Cardiomyoplasty in France,” Basic Appl.Myol., vol. 19, no. 1, pp. 17–24, 2009.

[63] N. R. Grubb, G. R. Sutherland, C. Campanella, A. Fleming, C. J. Sinclair, and K. A. Fox, “Latissimus dorsi muscle: assessment of stimulation after cardiomyoplasty with Doppler US tissue imaging,” Radiology, vol. 199, no. 0033–8419 (Print), pp. 59–64, Apr. 1996.

[64] a a Hagege, M. Desnos, J. C. Chachques, a Carpentier, F. Fernandez, F. Fontaliran, and C. Guerot, “Preliminary report: follow-up after dynamic cardiomyoplasty.,” Lancet, vol. 335, no. 8698, pp. 1122–4, May 1990.

[65] A. A. Hagege, M. Desnos, F. Fernandez, B. Besse, N. Mirochnik, M. Castaldo, J. C. Chachques, A. Carpentier, and C. Guerot, “Clinical study of the effects of latissimus dorsi muscle flap stimulation after cardiomyoplasty,” Circulation, vol. 92, no. 0009–7322 (Print), pp. II210–II215, Nov. 1995.

[66] A. Haverich and G. Watanabe, “Heart transplantation, assist devices, and crdiomyoplasty,” Current Opinion in Cardiology, vol. 7, pp. 259–266, 1992.

[67] J. Helou, Y. Misawa, J. A. Stewart, M. Colson, and R. C. Chiu, “Optimizing ‘delay period’ for burst stimulation in dynamic cardiomyoplasty,” Ann.Thorac.Surg., vol. 59, no. 0003–4975 (Print), pp. 74–77, Jan. 1995.

[68] A. D. Jatene and L. F. Moreira, “Reply to invited letter concerning: Left ventricular function changes after cardiomyoplasty in patients with dilated cardiomyopathy (J Thorac Cardiovasc Surg 1991;102:156-7),” The Journal of thoracic and cardiovascular surgery, vol. 103, no. 3, p. 595, Mar. 1992.

[69] A. D. Jatene, L. F. Moreira, N. A. Stolf, E. A. Bocchi, P. Seferian Jr., P. M. Fernandes, H. Abensur, and P. Seferian, “Left ventricular function changes after cardiomyoplasty in patients with dilated cardiomyopathy,” J.Thorac.Cardiovasc.Surg., vol. 102, no. 0022–5223 (Print), pp. 132–138, Jul. 1991.

[70] O. Jegaden, F. Delahaye, G. Finet, der Van V, P. Montagna, A. Eker, J. Ossete, R. Rossi, P. A. Saint, and P. H. Mikaeloff, “Late hemodynamic results after cardiomyoplasty in congestive heart failure,” Ann.Thorac.Surg., vol. 57, no. 0003–4975 (Print), pp. 1151–1157, May 1994.

[71] O. Jegaden, F. Delahaye, P. Montagna, C. Vedrinne, P. Blanc, R. Rossi, A. Tabib, P. A. Saint, J. P. Delahaye, and P. H. Mikaeloff, “Cardiomyoplasty does not preclude heart transplantation,” Ann.Thorac.Surg., vol. 53, no. 0003–4975 (Print), pp. 875–880, May 1992.

[72] G. Jondeau, R. Dorent, V. Bors, J. C. Dib, O. Dubourg, R. Benzidia, I. Gandjbakhch, and J. P. Bourdarias, “Dynamic cardiomyoplasty: effect of discontinuing latissimus dorsi muscle stimulation on left ventricular systolic and diastolic performance and exercise capacity.,” Journal of the American College of Cardiology, vol. 26, no. 1, pp. 129–34, Jul. 1995.

[73] R. Kalil-Filho, E. Bocchi, R. G. Weiss, L. Rosemberg, F. Bacal, L. F. Moreira, N. A. Stolf, A. A. Magalhães, G. Bellotti, and A. Jatene, “Magnetic resonance imaging evaluation of chronic changes in latissimus dorsi cardiomyoplasty.,” Circulation, vol. 90, no. 5 Pt 2, pp. II102–6, Nov. 1994.

[74] D. a Kass, K. L. Baughman, P. H. Pak, P. W. Cho, H. R. Levin, T. J. Gardner, H. R. Halperin, J. E. Tsitlik, and M. a Acker, “Reverse remodeling from cardiomyoplasty in human heart failure. External constraint versus active assist.,” Circulation, vol. 91, no. 9, pp. 2314–8, May 1995.

[75] D. S. Küçükaksu, O. Tarcan, S. Küçüker, M. A. Ozatik, Z. Sakaogullari, E. Sener, and O. Taşdemir, “Dynamic cardiomyoplasty as a biomechanic bridge to heart transplantation.,” Heart & lung : the journal of critical care, vol. 32, no. 6, pp. 407–11, 2003.

[76] E. Lalinde, J. Sanz, a Bazán, a Ballesteros, F. Mesa, J. Elejabeitia, V. Paloma, and J. Herreros, “The use of latissimus dorsi muscle flap in reconstructive heart surgery.,” Plastic and reconstructive surgery, vol. 94, no. 3. pp. 490–5, Sep-1994.

[77] R. Lange, J. Brachmann, and S. Hagl, “Stellenwert der dynamischen Kardiomyoplastik [Value of dynamic cardiomyoplasty],” Z.Kardiol., vol. 85 Suppl 4, no. 0300–5860 (Print), pp. 49–58, 1996.

[78] R. Lange and S. Hagl, “Dynamic cardiomyoplasty: how well does it work?,” Eur.Heart J., vol. 18, no. 0195–668X (Print), pp. 191–197, Feb. 1997.

[79] R. Lange, F. U. Sack, B. Voss, R. De Simone, a Nair, M. Thielmann, J. Brachmann, F. Fleischer, and S. Hagl, “Dynamic cardiomyoplasty: indication, surgical technique, and results.,” The Thoracic and cardiovascular surgeon, vol. 43, no. 5, pp. 243–51, Oct. 1995.

[80] R. R. Lazzara and D. R. Trumble, “Clinical and Experimental Effects of the Unstimulated (Static) Right Latissimus Dorsi Cardiomyoplasty on Left Ventricular Function,” Basic Appl.Myol., vol. 3, no. 4, pp. 281–288, 1993.

[81] A. Lehmann and K. Faust, “Dynamic cardiomyoplasty in patients with end-stage heart failure: anaestetic considerations,” Br J Anaesth, vol. 82, pp. 140–143, 1999.

[82] Lorusso R, Marchini A, Bianchetti F, Curnis A, Visioli O, and Zogno M., “Cardiomyoplasty and implantable cardioverter defibrillator: efficacy and safety of concomitant device implantation: sudden death and cardiomyoplasty,” J Card Surg., vol. 13, no. 2, pp. 150–5, 1998.

[83] R. Lorusso, G. Coletti, a Della Valle, G. Steffenino, G. Aliprandi, and O. Alfieri, “Right latissimus dorsi cardiomyoplasty in diaphragm eventration and cardiac malposition.,” The Annals of thoracic surgery, vol. 60, no. 2, pp. 452–4, Aug. 1995.

[84] R. Lorusso, A. Curnis, C. Struble, L. Sandrelli, and O. Alfieri, “Bacterial infection of cardiomyostimulator abdominal pocket following cardiomyoplasty procedure: an original approach to preserve synchronous muscle stimulation.,” Journal of cardiac surgery, vol. 10, no. 4 Pt 1, pp. 358–62, Jul. 1995.

[85] R. Lorusso, E. Milan, M. Volterrani, R. Giubbini, F. H. van der Veen, J. J. Schreuder, A. Picchioni, and O. Alfieri, “Cardiomyoplasty as an isolated procedure to treat refractory heart failure,” Eur.J.Cardiothorac.Surg., vol. 11, no. 1010–7940 (Print), pp. 363–372, Feb. 1997.

[86] R. Lorusso, C. Struble, F. Bianchetti, a Marchini, a Curnis, and O. Alfieri, “Management of pacing system related complications in patients undergoing dynamic cardiomyoplasty.,” Pacing and clinical electrophysiology : PACE, vol. 22, no. 1 Pt 1, pp. 116–8, Jan. 1999.

[87] R. Lorusso, M. Zogno, G. La Canna, M. Metra, L. Sandrelli, V. Borghetti, F. Maisano, and O. Alfieri, “Dynamic cardiomyoplasty as an effective therapy for dilated cardiomyopathy.,” Journal of cardiac surgery, vol. 8, no. 2, pp. 177–83, Mar. 1993.

[88] R. Lorusso, F. H. V. D. Veen, O. Alfieri, and C. S. Division, “Recent Findings on Cardiomyoplasty Management and Mechanisms of Action: Implications for Patient Selection, and Postoperative Care,” Basic Appl.Myol., vol. 7, no. 1, pp. 15–22, 1997.

[89] C. M. Lucas, F. H. van der Veen, E. C. Cheriex, V. van Ommen, O. C. Penn, and H. J. Wellens, “The importance of muscle relaxation in dynamic cardiomyoplasty.,” Pacing and clinical electrophysiology : PACE, vol. 15, no. 10 Pt 1, pp. 1430–6, Oct. 1992.

[90] G. J. Magovern Sr. and K. A. Simpson, “Clinical cardiomyoplasty: review of the ten-year United States experience,” Ann.Thorac.Surg., vol. 61, no. 0003–4975 (Print), pp. 413–419, Jan. 1996.

[91] G. J. Magovern, F. R. Heckler, S. B. Park, I. Y. Christlieb, G. A. Liebler, J. A. Burkholder, T. D. Maher, D. H. Benckart, G. J. Magovern Jr., and R. L. Kao, “Paced skeletal muscle for dynamic cardiomyoplasty,” Ann.Thorac.Surg., vol. 45, no. 0003–4975 (Print), pp. 614–619, Jun. 1988.

[92] G. J. Magovern, F. R. Heckler, S. B. Park, I. Y. Christlieb, G. J. Magovern Jr., R. L. Kao, D. H. Benckart, G. Tullis, E. Rozar, G. A. Liebler, and ., “Paced latissimus dorsi used for dynamic cardiomyoplasty of left ventricular aneurysms,” Ann.Thorac.Surg., vol. 44, no. 0003–4975 (Print), pp. 379–388, Oct. 1987.

[93] G. J. Magovern, S. B. Park, R. L. Kao, I. Y. Christlieb, and G. J. Magovern Jr., “Dynamic cardiomyoplasty in patients,” J.Heart Transplant., vol. 9, no. 0887–2570 (Print), pp. 258–263, May 1990.

[94] J. a Magovern, T. J. Hunter, J. C. Cardone, and I. Y. Christlieb, “Long-term results of right latissimus dorsi cardiomyoplasty.,” Journal of cardiac surgery, vol. 11, no. 4, pp. 264–70.

[95] J. a Magovern, G. J. Magovern, T. D. Maher, D. H. Benckart, S. B. Park, and I. Y. Christlieb, “Operation for congestive heart failure: transplantation, coronary artery bypass, and cardiomyoplasty.,” The Annals of thoracic surgery, vol. 56, no. 3. pp. 418–24; discussion 424–5, Sep-1993.

[96] J. a Magovern, G. J. Magovern, M. a Palumbi, and J. E. Orie, “Surgical therapy for congestive heart failure: indications for transplantation versus cardiomyoplasty.,” The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation, vol. 11, no. 3 Pt 1. pp. 538–44.

[97] T. Mesana, S. Bauer, T. Caus, C. Pomane, A. Mouly, and J. Monties, “Circulatory Assist Techniques After Cardiomyoplasty-Determinants for Clinical Outcome and Late Consequences,” ASAIO, vol. 41, pp. M469–M472, 1995.

[98] Y. Misawa, B. D. Mott, J. O. Lough, and R. C. Chiu, “Pathologic findings of latissimus dorsi muscle graft in dynamic cardiomyoplasty: clinical implications,” J.Heart Lung Transplant., vol. 16, no. 1053–2498 (Print), pp. 585–595, Jun. 1997.

[99] L. Molteni, H. Almada, and R. Ferreira, “Synchronously stimulated skeletal muscle graft for left ventricular assistance. Case report.,” The Journal of thoracic and cardiovascular surgery, vol. 97, no. 3, pp. 439–46, Mar. 1989.

[100] L. F. Moreira, A. Benicio, F. Bacal, E. A. Bocchi, N. A. Stolf, and S. A. Oliveira, “Determinants of long-term mortality of current palliative surgical treatment for dilated cardiomyopathy,” Eur J Cardiothorac Surg, vol. 23, pp. 756–764, 2003.

[101] L. F. Moreira, E. a Bocchi, F. Bacal, N. a Stolf, G. Bellotti, and a D. Jatene, “Present trends in clinical experience with dynamic cardiomyoplasty.,” Artificial organs, vol. 19, no. 3. pp. 211–6, Mar-1995.

[102] L. F. Moreira, E. A. Bocchi, and N. A. Stolf, “Dynamic Cardiomyoplasty in the treatment of dilated cardiomyopathy: Current results and perspectives,” J Card Surg., vol. 11, pp. 207–216, 1996.

[103] L. F. Moreira, E. a Bocchi, N. a Stolf, F. Pileggi, and a D. Jatene, “Current expectations in dynamic cardiomyoplasty.,” Ann.Thorac.Surg., vol. 55, no. 1. pp. 299–303, Jan-1993.

[104] L. F. Moreira, P. Seferian Jr., E. A. Bocchi, P. M. Pego-Fernandes, N. A. Stolf, A. C. Pereira-Barretto, and A. D. Jatene, “Survival improvement with dynamic cardiomyoplasty in patients with dilated cardiomyopathy,” Circulation, vol. 84, no. 0009–7322 (Print), pp. III296–III302, Nov. 1991.

[105] L. F. Moreira, N. a Stolf, E. a Bocchi, F. Bacal, P. M. Pêgo-Fernandes, H. Abensur, J. C. Meneghetti, and a D. Jatene, “Clinical and left ventricular function outcomes up to five years after dynamic cardiomyoplasty.,” The Journal of thoracic and cardiovascular surgery, vol. 109, no. 2, pp. 353–62; discussion 362–3, Feb. 1995.

[106] L. F. Moreira, N. A. Stolf, E. A. Bocchi, A. C. Pereira-Barretto, J. C. Meneghetti, M. C. Giorgi, A. V. Moraes, J. J. Leite, P. L. da Luz, and A. D. Jatene, “Latissimus dorsi cardiomyoplasty in the treatment of patients with dilated cardiomyopathy,” Circulation, vol. 82, no. 0009–7322 (Print), pp. IV257–IV263, Nov. 1990.

[107] L. F. Moreira, N. a Stolf, D. M. Braile, and a D. Jatene, “Dynamic cardiomyoplasty in South America.,” The Annals of thoracic surgery, vol. 61, no. 1, pp. 408–12, Jan. 1996.

[108] L. F. Moreira, N. A. Stolf, and A. D. Jatene, “Benefits of cardiomyoplasty for dilated cardiomyopathy,” Semin.Thorac.Cardiovasc.Surg., vol. 3, no. 1043–0679 (Print), pp. 140–144, Apr. 1991.

[109] T. H. Nguyenn and T.-A. hhhhoang, “Latissimus Dorsi Cardiomyoplasty:Radiographic Findingss,” American Roentgen Ray Society, vol. 150, pp. 545–547, 1988.

[110] G. Nikolić, “Narrow capture beat.,” Heart & lung : the journal of critical care, vol. 33, no. 3, pp. 194–5.

[111] J. N. Odim, J. H. Burgess, B. H. Williams, P. E. Blundell, M. a Rabinovitch, J. a Stewart, J. O. Lough, and R. C. Chiu, “Pathophysiology of dynamic cardiomyoplasty: a clinico-pathological case study.,” Journal of cardiac surgery, vol. 5, no. 4, pp. 336–46, Dec. 1990.

[112] A. Peix, J. Tain, C. Cabrera, F. Dortico, D. Garcia-Barreto, L. Rodriguez, and A. M. Maltas, “Radionuclide ventriculography in dynamic cardiomyoplasty,” J.Nucl.Biol.Med., vol. 38, no. 0368–3249 (Print), pp. 535–539, Dec. 1994.

[113] V. V. Pekarsky, S. D. Akhmedov, I. a Dubrovsky, a V. Baturin, E. V. Krivoschekov, a N. Rizhikh, and M. V. Pekarskaya, “Optimal electrical stimulation for latissimus dorsi muscle after cardiomyoplasty.,” Journal of cardiac surgery, vol. 8, no. 2, pp. 172–6, Mar. 1993.

[114] J. Peteiro, C. Struble, N. Vazquez, and A. Castro-Beiras, “Spontaneous reversal of a cardiomyostimulator to asynchronous mode.,” Pacing and clinical electrophysiology : PACE, vol. 19, no. 3, pp. 367–9, Mar. 1996.

[115] P. A. Poole-Wilson, K. Swedberg, J. G. F. Clemand, A. Di Lenarda, P. Hanrath, M. Komejda, J. Lubsen, B. Lutiger, M. Metra, W. J. Remme, C. Torp-Pedersen, A. Scherhag, and A. Skene, “Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial,” The Lancet, vol. 362, pp. 7–13, 2003.

[116] T. S. Rector, D. Benditt, J. C. Chachques, R. C. Chiu, F. Delahaye, M. Jessup, G. Kirkorian, G. Thiene, and J. Titus, “Retrospective risk analysis for early heart-related death after cardiomyoplasty. The Worldwide Cardiomyoplasty Group,” J.Heart Lung Transplant., vol. 16, no. 1053–2498 (Print), pp. 1018–1025, Oct. 1997.

[117] G. L. Rigatelli, U. Carraro, M. Barbiero, M. Zanchetta, and G. Rigatelli, “New hopes for dynamic cardiomyoplasty from use of Doppler flow wire in evaluation of demand stimulation,” J.Cardiovasc.Surg.(Torino), vol. 43, no. 0021–9509 (Print), pp. 67–70, Feb. 2002.

[118] G. Rigatelli and M. Barbiero, “Skeletal muscle cardiocirculatory - Assist by demand dynamic cardiomyoplasty: 5-Year results,” Basic Appl.Myol., vol. 12, no. 3, pp. 91–95, 2002.

[119] G. Rigatelli, M. Barbiero, A. Cotogni, A. Bandello, R. Riccardi, and U. Carraro, “‘Demand’ stimulation of latissimus dorsi heart wrap: experience in humans and comparison with adynamic girdling,” The Annals of Thoracic Surgery, vol. 76, no. 5, pp. 1587–1592, Nov. 2003.

[120] G. Rigatelli and U. Carraro, “Demand cardiomyoplasty: Dynamic girdling is superior to Adynamic Girdling,” Basic Appl.Myol., vol. 13, no. 2, pp. 89–93, 2003.

[121] G. Rigatelli and U. Carraro, “Correlations between time, Latissimus dorsi wrap properties and systolic assistance in demand dynamic cardiomyoplasty?,” Basic Appl.Myol., vol. 10, no. 5, pp. 249–251, 2000.

[122] G. Rigatelli, M. Barbiero, G. Rigatelli, R. Riccardi, F. Cobelli, A. Cotogni, A. Bandello, and U. Carraro, “Maintained benefits and improved survival of dynamic cardiomyoplasty by activity-rest stimulation: 5-year results of the Italian trial on ‘demand’ dynamic cardiomyoplasty.,” European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery, vol. 23, no. 1, pp. 81–5, Jan. 2003.

[123] G. Rigatelli and U. Carraro, “Latissimus Dorsi tetanic fusion frequency in clinical settings : Monitoring fast to slow muscle transformation during follow-up of Demand Dynamic Cardiomyoplasty,” Basic Appl.Myol., vol. 19, no. 1, pp. 25–30, 2009.

[124] G. Rigatelli, U. Carraro, M. Barbiero, M. Zanchetta, K. Dimopoulos, F. Cobelli, R. Riccardi, and G. Rigatelli, “Activity-rest stimulation protocol improves cardiac assistance in dynamic cardiomyoplasty.,” European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery, vol. 21, no. 3, pp. 478–82, Mar. 2002.

[125] G. Rigatelli, U. Carraro, R. Riccardi, and G. Rigatelli, “Demand dynamic biogirdling: ten-year results.,” The Journal of thoracic and cardiovascular surgery, vol. 137, no. 1, pp. e58–9, Jan. 2009.

[126] S. Salmons and J. C. Jarvis, “Cardiomyoplasty: A Look at the Fundamentals,” in Cardiomyoplasty, A. F. Carpentier, J. C. Chachques, and P. A. Grandjean, Eds. Futura Publishing Company, Inc., 1991, pp. 3– 17.

[127] J. J. Schreuder, F. H. van der Veen, F. Delahaye, O. Alfieri, O. Jegarden, R. Lorusso, J. R. Jansen, V. van Ommen, G. Finet, and H. J. Wellens, “Congestive Heart Failure: Beat-to-Beat Analysis of Left Ventricular Pressure-Volume Relation and Stroke Volume by Conductance Catheter and Aortic Modelflow in Cardiomyoplasty Patients,” Circulation, vol. 91, no. 7, p. 2010:2017, 1995.

[128] J. J. Schreuder, F. H. van der Veen, E. T. van der Velde, F. Delahaye, O. Alfieri, O. Jegaden, R. Lorusso, J. R. Jansen, S. a Hoeksel, G. Finet, M. Volterrani, H. G. Kaulbach, J. Baan, and H. J. Wellens, “Left ventricular pressure-volume relationships before and after cardiomyoplasty in patients with heart failure.,” Circulation, vol. 96, no. 9, pp. 2978–86, Nov. 1997.

[129] J. J. Schreuder, F. H. van der Veen, E. T. van der Velde, F. Delahaye, O. Alfieri, O. Jegaden, R. Lorusso, J. R. Jansen, O. van V, G. Finet, and ., “Beat-to-beat analysis of left ventricular pressure-volume relation and stroke volume by conductance catheter and aortic Modelflow in cardiomyoplasty patients,” Circulation, vol. 91, no. 0009–7322 (Print), pp. 2010–2017, Apr. 1995.

[130] J. J. Schreuder, F. H. van der Veen, E. T. van der Velde, F. Delahaye, O. Alfieri, O. Jegaden, R. Lorusso, J. R. Jansen, O. van V, G. Finet, ., O. Jegarden, V. van Ommen, and H. J. Wellens, “Congestive Heart Failure: Beat-to-Beat Analysis of Left Ventricular Pressure-Volume Relation and Stroke Volume by Conductance Catheter and Aortic Modelflow in Cardiomyoplasty Patients,” Circulation, vol. 91, no. 7, p. 2010:2017, Apr. 1995.

[131] M. Smink and F. H. van der Veen, “Imaging of skeletal muscle contraction after Cardiomyoplasty,” Basic Appl.Myol., vol. 9, no. 5, pp. 223–227, 1999.

[132] O. Tasdemir, S. D. Küçükaksu, K. M. Vural, F. S. Katircioglu, E. Kütük, and K. Bayazit, “A comparison of the early and midterm results after dynamic cardiomyoplasty in patients with ischemic or idiopathic cardiomyopathy.,” The Journal of thoracic and cardiovascular surgery, vol. 113, no. 1. pp. 173–80; discussion 180–1, Jan-1997.

[133] O. Tasdemir, K. M. Vural, S. D. Kucukaksu, O. K. Tarcan, M. Ozdemir, E. Kutuk, and K. Bayazit, “Comparative study on cardiomyoplasty patients with the cardiomyostimulator on versus off,” Ann.Thorac.Surg., vol. 62, no. 0003–4975 (Print), pp. 1708–1713, Dec. 1996.

[134] R. K. Thakur, L. H. Chow, G. M. Guiraudon, W. J. Kostuk, J. E. Brown, P. V. Pflugfelder, and C. M. Guiraudon, “Latissimus dorsi dynamic cardiomyoplasty: role of combined ICD implantation.,” Journal of cardiac surgery, vol. 10, no. 4 Pt 1, pp. 295–7, Jul. 1995.

[135] J. Timmerman, J. M. Van Der Maaten, J. M. Wierda, a a Broekema, H. E. Mungroop, M. H. Brouwer, and M. P. Van Den Berg, “The use of neuromuscular blocking agents in noncardiac surgery after dynamic cardiomyoplasty.,” Anaesthesia, vol. 54, no. 9, pp. 879–82, Sep. 1999.

[136] J. Trainini, J. C. Barisani, E. I. Cabrera Fischer, S. Chada, A. I. Christen, and B. Elencwajg, “Chronic aortic counterpulsation with latissimus dorsi in heart failure: clinical follow-up,” J.Heart Lung Transplant., vol. 18, no. 1053–2498 (Print), pp. 1120–1125, Nov. 1999.

[137] J. Trainini, E. I. Cabrera Fischer, J. Barisani, A. I. Christen, J. Mouras, P. J. de, B. Elencwajg, and J. C. Chachques, “Dynamic aortomyoplasty in treating end-stage heart failure,” J.Heart Lung Transplant., vol. 21, no. 1053–2498 (Print), pp. 1068–1073, Oct. 2002.

[138] J. C. Trainini, “Dynamic Cardiomyoplasty and Aortomyoplasty : the Buenos Aires Experience,” Basic Appl.Myol., vol. 8, no. 6, pp. 413–18, 1998.

[139] L. Tritapepe, P. Voci, G. D’Amati, A. Cogliati, A. Menichetti, and P. Gallo, “Neuromuscular relaxants in non-cardiac surgery after cardiomyoplasty.,” Canadian journal of anaesthesia = Journal canadien d’anesthésie, vol. 45, no. 4, pp. 324–7, Apr. 1998.

[140] M. P. van Den Berg, D. Nagelkerke, R. M. Brouwer, H. Mulder, H. de Boer, and H. J. Crijns, “Feasibility of pacemaker therapy after dynamic cardiomyoplasty.,” Pacing and clinical electrophysiology : PACE, vol. 22, no. 10, pp. 1543–6, Oct. 1999.

[141] B. Voss and R. Lange, “[Dynamic cardiomyoplasty: evaluation of an alternative procedure in the treatment of terminal heart failure].,” Zeitschrift für Kardiologie, vol. 90 Suppl 1, no. 0300–5860 (Print), pp. 22–7, Jan. 2001.

[142] K. M. Vural, O. Tasdemir, S. D. Küçükaksu, O. K. Tarcan, and K. Bayazit, “Optimization of synchronization delay in latissimus dorsi dynamic cardiomyoplasty.,” The Annals of thoracic surgery, vol. 65, no. 5, pp. 1231–4, May 1998.

[143] C. Werling, C. Jungheim, and W. Saggau, “Dynamic Cardiomyoplasty: Clinical Experience after Seven Years,” Basic Appl.Myol., vol. 10, no. 3, pp. 113–117, 2000.

[144] M. B. Yilmaz, O. Tufekcioglu, S. Korkmaz, and I. Sabah, “Dynamic cardiomyoplasty: impact of effective pacing.,” International journal of cardiology, vol. 91, no. 1, pp. 101–2, Sep. 2003.

[145] J. B. Young and K. J. K, “Cardiomyoplasty-Skeletal Muscle Assist Randomized Trial (C-SMART): 6 Month Results,” in Circulation (Suppl.), 1999.

[146] P. Poole-Wilson, K. Swedberg, J. Cleland, A. Di Lenarda, P. Hanrath, M. Komajda, J. Lubsen, B. Lutiger, M. Metra, W. Remme, C. Torp-Pedersen, A. Scherhag, A. Skene, and for the C. Investigators*, “Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial,” Lancet, vol. 362, pp. 7–13, 2003.

[147] E. Rose, A. Gelijns, A. Moskowitz, D. Heitjan, L. Stevenson, W. Dembitsky, J. Long, D. Ascheim, A. Tierney, R. Levitan, J. Watson, P. Meier, N. Ronan, P. Shapiro, R. Lazar, L. Miller, L. Gupta, O. Frazier, P. Desvigne-Nickens, M. Oz, and V. Poirier, “Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) Study Group Long-Term Use of a Left Ventricular Assist Device for End-Stage Heart Failure,” N Engl J Med, vol. 345, no. 20, pp. 1435–1443, 2001.

[148] J. G. F. Cleland, J.-C. Daubert, E. Erdmann, N. Freemantle, D. Gras, L. Kappenberger, L. Tavazzi, and for the C. R. — H. F. (CARE-H. S. Investigators*, “The Effect of Cardiac Resynchronization on Morbidity and Mortality in Heart Failure,” N Engl J Med, vol. 352, pp. 1539–49, 2005.

[149] I. S. of H. and L. ISHLT (Transplantation, “Heart Transplantation-Annual Report 2011,” J Heart Lung Transplant., vol. 30, no. 10, pp. 1071–1132, 2011.

[150] S. J. Park, C. A. Milano, A. J. Tatooles, J. G. Rogers, R. M. Adamson, D. E. Steidley, G. A. Ewald, and D. J. F. and M. S. Slaughter, Kartik S. Sundareswaran, “Outcomes in Advanced Heart Failure Patients with Left Ventricular Assist Devices for Destination Therapy,” Circulation Heart Fail, vol. 5, no. 2, pp. 241–8, 2012.

[151] P. Strauer Donndorf, G. Kundt, A. Kaminski, C. Yerebakan, A. Liesbold, G. Steinhoff, and A. Glass, “Intramyocardial bone marrow stem cell transplantation during coronary artery bypass surgery: a meta-analysis,” J Thorac Cardiovasc Surg, vol. 142, no. 4, pp. 911–20, 2011.

[152] B. Strauer and G. Steinhoff, “10 Years of Intracoronary and Intramyocardial Bone marrow Stem Cell Therapy of the Heart,” JACC, vol. 58, no. 11, pp. 1095–104, 2001.

[153] P. Donndorf, G. Kundt, A. Kaminski, C. Yerebakan, A. Liebold, G. Steinhoff, and A. Glass, “Intramyocardial bone marrow stem cell transplantation during coronary artery bypass surgery: a meta-analysis,” J Thorac Cardiovasc Surg, vol. 142, no. 4, pp. 911–20, 2011.

[154] N. Guldner, Kajahn, M. Klinger, H. Sievers, and C. Kruse, “Autonomously contracting human cardiomyocytes generated from adult pancreatic stem cells and enhanced in co-cultures with myocardial biopsies,” Int J Artif Organs, vol. 29, pp. 1158–66, 2006.

[155] N. W. Guldner, P. Klapproth, P. O. Schwarz, T. Hardel, P. Rumpf, J. Kajahn, P. Margaritoff, H. H. Sievers, and M. Grossherr, “Bio-technologies for a glandular stem cell cardiomyopexy,” Ann Anat, vol. 191, no. 1, pp. 45–50, 2009.

[156] Mathieu-Costello and E. Al., “Capillary-to-fibre surface ratio in rat fast-twitch hindlimb muscles after chronic electrical stimulation,” J Appl Physiol, vol. 80, no. 3, pp. 904–909, 1996.

[157] J. Dawson and O. Hudlicka, “The effect of long-term activity on the microvasculature of rat glycolytic muscle,” Int J Microcirc, vol. 8, pp. 53–69, 1989.

[158] A. Lopez-Guajardo, H. Sutherland, J. Jarvis, and S. Salmons, “Induction of a fatigue-resistant phenotype in rabbit fast muscle by small daily amounts of stimulation,” J Appl Physiol, vol. 90, no. 5, pp. 1909–18, 2001.

[159] N. Guldner, H. Eichstaedt, P. Klapproth, and E. Al., “A method to increase muscular power for cardiac assistance,” Circulation, vol. 89, pp. 1032–1040, 1994.

[160] N. Guldner, P. Klapproth, M. Grossherr, and et al., “Clenbuterol-supported dynamic training of skeletal muscle ventricles against systemic load: a key for powerful circulatory assist?,” Circulation, vol. 101, pp. 2213–2219, 2000.

[161] N. Guldner, P. Klapproth, M. Grossherr, and E. Al., “Biomechanical hearts: muscular blood pumps, performed in a 1-step operation, and trained under support of clenbuterol,” Circulation, vol. 104, pp. 717–722, 2001.